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SUMMARY

This paper presents our e�ort to addressing �uid–structure interaction (FSI) problems by means of
computational mechanics. A stabilized �nite element formulation is used to solve the incompressible
Navier–Stokes equations written in primitive variables. The structure is modelled using rigid-body dy-
namic equations solved using a Runge–Kutta method. The distinctive feature of our approach is the
combination of large eddy simulation (LES)—based on implicit turbulence modelling—with time–space
adaptive techniques in arbitrary Lagrangian Eulerian co-ordinates (ALE). Three representative numeri-
cal examples are presented. The �rst one is the simulation of turbulent vortex shedding around a �xed
obstacle, comparing our two-dimensional (2D) LES results with experiments and more re�ned three-
dimensional (3D) numerical solutions. The second example presents an ALE computation with moving
boundaries, where we were able to detect the lock-in phenomenon for an oscillating cylinder driven by
periodic vortex shedding. Our �nal example is the FSI problem associated to the �ow around a dom-
inant central span section of the Rio-Niter�oi bridge, where we compare our results with experiments
performed in a wind tunnel. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Problems involving �uid–structure interaction (FSI) are important in many branches of en-
gineering. Examples include the vibration of steam generator tubes in nuclear power plants,
the aeroelastic behaviour of bridges and other civil engineering structures and the move-
ment of risers and mooring lines in o�shore oil production systems. Not long ago, the only
approach possible for these problems was an experimental one, based on costly tests per-
formed in wind or water facilities. More recently, with the development of computers and the
area of computational �uid dynamics (CFD), engineers and analysts have gained access to
complementary numerical tools for understanding, modelling and designing solutions for FSI
problems.
As far as a complete and direct simulation of all relevant physical aspects is concerned, the

complexity of the problems mentioned above exceeds the computing capacity of the fastest
computers available. In the foreseeable future, engineers will still have to resort to ingenuity to
combine numerical and experimental techniques in order to face the challenges these problems
pose. Nonetheless, considerable progress is being made in the simulation of turbulence with
large eddy simulation (LES), in the development of high performance parallel codes and in
the use of adaptive techniques to optimize the accuracy of discretizations that are constrained
by computational cost.
In this paper, we present our e�ort to addressing FSI problems by means of computational

mechanics. Our approach involves LES with implicit turbulence modelling of the so-called
sub-grid scales [1, 2]. This is combined with time–space adaptive techniques based on remesh-
ing and on the use of suitable local time steps [3, 4]. The FSI problems are described using
arbitrary Lagrangian–Eulerian co-ordinates to facilitate the implementation of dynamic and
kinematic compatibility conditions between �uid and structure [5].
For the sake of clarity, we start presenting the CFD techniques in a Eulerian framework

in Section 2. We describe the stabilized �nite element formulation and the adaptive tech-
niques employed in the computations. In Section 3, we discuss our particular LES procedure,
where no explicit modelling of sub-grid scales is needed [1, 2]. A rigid-body structure and
the corresponding equations for rigid-body motion are introduced in Section 4, where our
CFD techniques are generalized to arbitrary Lagrangian–Eulerian co-ordinates in order to deal
with �uid–structure interaction problems [5]. The numerical examples presented in Section 5
demonstrate the usefulness of the computational techniques developed. Finally, Section 6 con-
tains our concluding remarks.

2. CFD TECHNIQUES

In this section we present the CFD techniques used in the computations. These include our sta-
bilized �nite element formulation and the time–space adaptive procedure based on remeshing
and on the choice of suitable local time steps.
We start setting the problem in the continuum using a Eulerian description of the �uid �ow.

The problem is de�ned on the open bounded domain �, with boundary �, contained in the
nsd-dimensional Euclidean space. The �ow is modelled by the incompressible Navier–Stokes
equations, written using the summation convention for a=1; : : : ; nsd and b=1; : : : ; nsd, in
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Cartesian co-ordinates:

�
[
@ua
@t
+ ub

@ua
@xb

]
− @�ab
@xb

+
@p
@xa

= 0 (1)

@ua
@xa

= 0 (2)

Note that the viscous stress is given by �ab=�(@ua=@xb + @ub=@xa), where � is the �uid
viscosity. The �uid density is denoted by �. The dependent variables are the velocity and
pressure �elds represented by ua and p, respectively.
The Navier–Stokes equations are discretized using the stabilized �nite element formulation

of De Sampaio and Coutinho [4]. The derivation is only sketched here and the reader is
referred to the original work for details [4]. The formulation is obtained from a least-squares
minimization of the time-discretized momentum balance residual with respect to the velocity
and pressure degrees of freedom. In our two-dimensional (2D) computations, we use linear
triangles to approximate both velocity and pressure. A pressure-continuity equation, enforcing
the mass balance, is obtained combining the standard Galerkin approximation of the continuity
equation with the minimization of the momentum squared residual with respect to the pressure
degrees of freedom. This has the form of a Poisson equation that avoids the restrictions asso-
ciated to the Babu�ska–Brezzi stability condition, allowing the use of equal order interpolation
for velocity and pressure in the formulation [4].
Considering that the discretized �elds are ûn+1a =Njun+1aj and p̂n+1 =Njpn+1j , where un+1aj and

pn+1j are the velocity and pressure nodal values at time-level n + 1 and Ni are the shape
functions, the method takes the form of a Petrov–Galerkin weighted residual approximation
of the momentum equation∫

�

(
Ni +

	t
2
ûnb
@Ni
@xb

)
R̂a d�=0 ∀ free un+1ai (3)

combined with the pressure-continuity equation∫
�
	t
@Ni
@xa

R̂a d� +
∫
�
Ni�

@ûn+1a

@xa
d�=0 ∀ free pn+1i (4)

where R̂a denotes the Cartesian components of the residual of momentum:

R̂a=�

(
ûn+1a − ûna
	t

+ ûnb
@ûn+1=2a

@xb

)
− @�̂nab
@xb

+
@p̂n+1=2

@xa
(5)

2.1. Adaptive methods

Adaptive methods aim to optimize the accuracy of the computation for a given cost [4]
or, conversely, to minimize the cost for attaining a required solution quality [6]. In this
work, we combine a remeshing scheme with a local time-stepping algorithm for transient
problems [4].

2.1.1. Local time-stepping algorithm. In our procedure, we set local time steps according
to the expression 	t= �he=‖un‖, where �=coth(Reh=2) − 2=Reh, and Reh=�‖un‖he=� is the
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element Reynolds number based on the �ow velocity u and on the local element size he.
There are important reasons for such a choice. First, the weighting function used in the dis-
cretized momentum balance, Equation (3), becomes the SUPG weighting function of Hughes
and Brooks [7] and a correct amount of streamline upwinding is introduced in the formulation.
Indeed, the stabilization terms and weighting functions in Equations (3) and (4) have contri-
butions proportional to 	t, and stable results can only be achieved through local de�nition of
	t according to local values of velocity, physical properties and mesh size. Further, note that
the time step de�ned above is appropriate to follow the time evolution of the convection–
di�usion processes resolvable on a mesh with local size he. For strong convection (Reh�1)
we obtain 	t→ he=‖un‖, whereas for pure di�usion (Reh=0) we obtain 	t=� h2e=6�. An
obvious di
culty regarding the advance of the solution using local time steps is the fact that
the solution at di�erent locations is not synchronized. In this work, we use a simpli�ed form
of the algorithm introduced by De Sampaio [3], where the solution is advanced using the
local time steps for optimal choice of weighting functions, but a time-interpolation procedure
is used to synchronize the computation. The local time-stepping algorithm starts with the �ow
variables de�ned at time level tn, i.e. una= ua(t

n) and pn=p(tn), and then proceeds as follows:

(a) Set element time steps 	te using the corresponding element Reynolds number Reh.
(b) Project the element time steps 	te to mesh nodes, obtaining a piecewise linear time-step

distribution 	t = 	t(x)=Nj	tj, where 	tj denotes nodal time steps.
(c) Solve the governing equations using the local time-step distribution 	t=	t(x). The

solution, obtained at time t̃(x)= tn +	t(x), is given by ũa= ua(t̃) and p̃=p(t̃). The
use of the local time steps guarantees a correct stabilization of the discretized equations
used to obtain ũa= ua(t̃) and p̃=p(t̃).

(d) Choose the interpolation time level 	tint = 0:999	tmin, where 	tmin is the minimum
nodal time-step value.

(e) Synchronize the solution at the time level tn+1 = tn + 	tint, through interpolation on
the time domain, using the solution at t= tn, i.e. una= ua(t

n) and pn=p(tn), and the
solution at t̃(x)= tn+	t(x), given by ũa= ua(t̃) and p̃=p(t̃). Thus, the synchronized
solution at tn+1 = tn +	tint is given by ua(tn+1)= (1− �)ua(tn) + �ua(t̃) and p(tn+1)=
(1− �)p(tn) + �p(t̃), where � = 	tint=	t (note that 0¡�¡1).

(f) Update variables (tn+1→ tn) and return to step (a) to continue the transient computation.

In our procedure, 	tint plays the same role as the usual 	t in orthodox time-advance
schemes, in the sense that we have a synchronized solution whenever tn+1 = tn +	tint.

2.1.2. Adaptive remeshing. Much progress has been achieved in the �eld of �nite element
mesh adaptivity. The rapid development is both a consequence of the research on error esti-
mates [8] and of the availability of mesh generator routines capable of using the error data
to build improved meshes. In this work, the a posteriori error estimator of Zienkiewicz and
Zhu [8] is used to estimate the viscous stress error and to guide a remeshing procedure based
on equally distributing the estimated error among the �nite elements. The strategy, presented
in detail in Reference [4], requires the user to specify the aimed number of elements and the
minimum element size (hmin) to be employed in the computation. Besides limiting the number
of elements required to cover any given portion of the domain, the choice of the minimum
element size indirectly limits the minimum time-step size, as space and time discretizations
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Figure 1. Field values at the new mesh node p are interpolated using data from old mesh nodes i, j, k.

are related by the formula 	t= �he=‖un‖. Remeshing is based on the use a coarse background
grid that is locally re�ned with the creation of new points as required. The new points are
connected to the nodes of the original background grid using Bowyer’s algorithm [9].
The remeshing procedure is fully automatic: a new mesh is generated whenever the esti-

mated viscous stress error varies more than 1% during the transient analysis. This means that
the adequacy between mesh and solution is constantly evaluated as the computation proceeds.
In practice, a mesh generated according to the solution at a given time step may be used for
a number of subsequent time steps, depending on how fast the estimated error changes as the
�ow departs from the solution to which that mesh has been originally adjusted.

2.1.3. Time–space adaptive procedure. It is important to remark that the local time-stepping
algorithm is used in conjunction with the remeshing scheme. This permits linking the spatial
and time-step re�nement through the equation that de�nes the local time step, i.e. 	t= �he=
‖un‖, resulting in a time–space adaptive procedure. Thus, whenever the remeshing scheme
creates some local mesh re�nement to better resolve a particular �ow feature, the time step
is also adapted accordingly.

2.2. Transferring data to a new mesh

An important aspect in a remeshing procedure concerns the interpolation of �eld data between
two consecutive meshes. The problem of transferring data between meshes is illustrated in
Figure 1, where the determination of �eld values at a node on the new mesh requires the
interpolation of variable values that are only available on the old mesh.
Referring to Figure 1, let u be a generic variable. Then, the simplest way to compute

u at point p is through a linear interpolation based on the old mesh shape functions, i.e.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:673–693
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ûp=N1(p)u1 + N2(p)u2 + N3(p)u3, where u1, u2, u3 are nodal values on the old mesh and
N1, N2, N3 are the corresponding shape functions evaluated at point p. However, the repeated
use of this linear interpolation to transfer �eld data introduces dissipation in the numeri-
cal solution [6]. Therefore, we employ the interpolation scheme introduced by De Sampaio
et al. [6], where �rst derivatives of u, also stored on the old mesh nodes, are used to obtain a
correction term 	up. The interpolation scheme we use to transfer data between meshes takes
then the general form ũp= ûp+ �	up. For �=0 we have linear interpolation, whilst for �=1
the interpolation becomes second-order accurate.
The linear interpolation scheme is used when interpolation is required within an element

whose size is hmin. This is performed because the hmin value is imposed only to render the
computation a�ordable and, most probably, more re�nement would be required to capture
solution details on regions covered by elements with the minimum size. The choice of the
linear interpolation scheme in this case is motivated by the need of damping contributions
from spatial scales that cannot be resolved by the computational meshes used in the simulation.
On the other hand, the second-order accurate interpolation is used when interpolating within
elements larger than the prescribed minimum size hmin.

3. LARGE EDDY SIMULATION (LES)

In an LES the large turbulence scales are resolved by the discretization while the small sub-
grid scales are taken into account using the so-called sub-grid models [10]. The governing
equations are obtained by formally applying a �lter function on the original Navier–Stokes
system. The �ltering operation is shown in Equation (6), where we apply the �lter to the
velocity �eld ua(x; t). The resulting �ltered velocity �eld �ua(x; t) is given by

�ua(x; t) =
∫
G(x − x′)ua(x′; t) dx′ (6)

The �lter function G(r) integrates to 1 and decays to zero outside a range |r|¡O(	). The
parameter 	 is referred to as the �lter width [10].
Starting with the Navier–Stokes equations in conservative form

�
[
@ua
@t
+
@(uaub)
@xb

]
+
@p
@xa

− @�ab
@xb

= 0 (7)

@ua
@xa

= 0 (8)

the �ltered equations become

�
[
@ �ua
@t
+
@( �ua �ub)
@xb

]
+
@ �p
@xa

− @ ��ab
@xb

− @�Fab
@xb

= 0 (9)

@ �ua
@xa

= 0 (10)
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Note that the �ltered momentum equation, Equation (9), can be recast in convective form
using the �ltered mass balance, Equation (10),

�
[
@ �ua
@t
+ �ub

@ �ua
@xb

]
− @ ��ab
@xb

+
@ �p
@xa

− @�Fab
@xb

=0 (11)

The �ltering of the non-linear term of the momentum equation, Equation (7), gives rise to a
closure problem for the extra stress term �Fab that appears in Equation (9) or Equation (11).
This term is analogous to the Reynolds-stress that arises in the derivation of the Reynolds-
averaged Navier–Stokes (RANS) equations [10]. The stress term �Fab is given by

�Fab=�( �ua �ub − uaub) (12)

At this point, the standard approach in LES is to introduce sub-grid models to express �Fab in
terms of the �ltered �ow variables. A number of sub-grid closures have been proposed such
as the Smagorinsky model [10, 11], for instance. The reader is referred to the work of Sagaut
[11] for a comprehensive account on the sub-grid scale models used in LES. A review on
the advances in LES methodology for complex �ows is presented in Reference [12].
Recently, though, some attempts have been made to let the numerical methods themselves

(without resorting to explicit sub-grid models) to express the e�ect of the unresolvable sub-
grid scales on the mean �ow [1, 2, 13, 14]. De Sampaio and Coutinho [1] have called this
implicit sub-grid modelling. What is important to bear in mind is the distinction between
such an approach and a direct numerical simulation (DNS) of turbulence, where the time and
space discretizations are �ne enough to resolve all turbulence scales. Furthermore, note that
the design of an LES with an implicit sub-grid model becomes the design of the numerical
method itself. This includes not only the formulation used to obtain the discretized equations,
but also the adaptive schemes and other algorithms that a�ect the way the unresolvable scales
are treated (implicitly modelled) by the computation.
Next we shall investigate the relationship between our stabilized �nite element formulation

for incompressible �ows and the more orthodox LES procedures. In particular, we shall high-
light the implicit �ltering and the implicit sub-grid scale modelling that are embedded in our
stabilized formulation.
Let us consider the momentum equation written in conservative form, Equation (7), and a

Taylor series to approximate the velocity �eld at time level n+ 1

un+1a = una +	t
@una
@t
+
	t2

2
@
@t

(
@ua
@t

)n+1=2
(13)

Noting that Equation (7) permits substituting the terms @una=@t and @u
n+1=2
a =@t in the above

Taylor series we obtain

�
(
un+1a − una
	t

)
+ �

@(uaub)n

@xb
+
@pn

@xa
− @�nab
@xb

+
	t
2
@
@t

[
�
@(uaub)
@xb

+
@p
@xa

− @�ab
@xb

]n+1=2
= 0 (14)

or

�
(
un+1a − una
	t

)
+ �

@(uaub)n

@xb
+
@pn+1=2

@xa
− @�n+1=2ab

@xb
+

@
@xb

[
�
	t
2
@
@t
(uaub)

]n+1=2
= 0 (15)
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The above time discretization is the basis for the Lax–Wendro� and Taylor–Galerkin meth-
ods. In the Lax–Wendro� method Equation (15) is discretized in space with centred �nite
di�erences whereas in the Taylor–Galerkin scheme one proceeds discretizing Equation (15)
with �nite elements and the Galerkin method. In either case the last term on the left-hand
side of Equation (15) is responsible for stabilizing the computation, i.e. preventing that errors
arising from unresolvable scales destroy the simulation. Most importantly, Equation (15) can
be interpreted as a particular time discretization of the �ltered momentum equation, Equation
(9), where the model chosen for the extra tensor �Fab is

�Fab=−� 	t
2
@
@t
(uaub) (16)

It is worth noting that the �ltering operation that generates Equation (9) is merely a formal
process that permits identifying a contribution �Fab, arising from sub-grid scales, but that does
not indicate possible closures for �Fab. On the other hand, in the derivation of Equation (15),
a Taylor series de�nes the form of the extra tensor �Fab, whose presence in the formulation
�lters the numerical solution.
Introducing a �nite element discretization and using the Galerkin method to approximate

Equation (15), we obtain [5],∫
�

(
Ni +

	t
2
ûn+1=2b

@Ni
@xb

)
R̂n+1=2a d�=0 (17)

where

Rn+1=2a =
�
	t
(ûn+1a − ûna) + �ûn+1=2b

@ûn+1=2a

@xb
+
@p̂n+1=2

@xa
− @�n+1=2ab

@xb
(18)

Note that Equations (17) and (18) are essentially the same equations presented in Section 2,
namely Equations (3) and (5). The only di�erence is the approximation, in our stabilized
formulation, of ûn+1=2a by ûna. This shows that the stabilized �nite element method presented
in Section 2 embeds the model for �Fab given by Equation (16).
It is important to remark that the scheme used to transfer data between meshes, described

in Section 2, also plays a part in modelling the e�ects of the unresolvable scales. We recall
that the linear interpolation scheme, used to interpolate data within the small elements with
size hmin, introduces some extra dissipation when transferring data that is available at the very
limit of spatial resolution (hmin). On the other hand, as we use a second-order scheme when
interpolating data within elements larger than hmin, we do not introduce any extra dissipation
when dealing with the resolvable scales.
The main reason to adopt implicit sub-grid modelling is to avoid the excessive dissipation

introduced on resolvable scales by explicit sub-grid models such as the Smagorinsky closure,
for instance. In order to avoid excessive dissipation of resolvable �ow features, Hughes et al.
[15] proposed the variational multiscale method, with a priori separation between resolvable
and unresolvable scales, and where the use of the Smagorinsky model is con�ned to the latter.
In our case, the use of time steps adjusted to the local mesh resolution and physical properties,
results in fully exploiting the time–space resolution available, whilst preventing that errors
arising from unresolvable scales lead to numerical instability. Of course, the discretization that
is required to suitably model a particular turbulent �ow will be always problem dependent.
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Furthermore, special boundary conditions, incorporating the so-called universal law of the
wall, may be required to model turbulent boundary layers. Nonetheless, the method proposed
herein is capable of following the evolution of the large=slow features resolvable in a given
discretization. In this sense, it is an LES method where no explicit sub-grid modelling is
introduced.

4. FLUID–STRUCTURE INTERACTION (FSI)

We consider here the rigid-body motion of a structure that is driven by lift forces to os-
cillate in the direction transverse to the �ow. This FSI problem is described using arbitrary
Lagrangian–Eulerian co-ordinates in order to facilitate the implementation of dynamic and
kinematic compatibility conditions between �uid and structure [5]. The momentum equation,
Equation (1), is generalized to the ALE framework as follows:

�
[
dua
dt
+ (ub − wb)@ua@xb

]
− @�ab
@xb

+
@p
@xa

=0 (19)

where we have introduced the reference frame velocity w. In particular, note that the time
derivative in Equation (19) is the time derivative as viewed by an observer moving with the
reference frame velocity w. In practice, w will be de�ned conveniently in order to adjust the
problem reference frame, from Eulerian (w= 0) far from the moving body, to Lagrangian
(w= u) on the �uid–solid interface. The �uid is considered to be attached to the body (non-
slip and impermeability conditions), thus enforcing kinematic compatibility.
The structure exposed to the cross �ow is free to move in the vertical direction y, but

its movement is restrained in the x-direction. Rotation is also restrained. Thus, the structure
one-degree-of-freedom dynamics is described by the equation:

m
d2y
dt2

+ c
dy
dt
+ ky=FL (20)

where m, c and k are the mass, damping and sti�ness parameters by unit length, respectively.
The force FL is responsible for the dynamic coupling between the �uid and the structure
rigid-body motion. It is computed from the �ow �eld as

FL =−
∫
�c

[
�
(
@u
@y
+
@v
@x

)
nx + 2�

@v
@y
ny − pny

]
d� (21)

where n is the unit normal vector on the �uid–solid interface �c (pointing from �uid to the
solid). Note that in Equation (21) we used x1 = x, x2 =y, u1 = u and u2 = v. Although not
used in the dynamic equation, Equation (20), we also compute the drag force acting on the
structure. The drag force FD is obtained replacing u by v and x by y (and vice versa) in
Equation (21).
The method applied to the incompressible Navier–Stokes equations in a Eulerian reference

frame, in Section 2, is generalized here to the ALE description using the apparent convective
velocity v= u−w to replace u · ∇u by v · ∇u in the balance of momentum. Thus, the discretized
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equations, Equations (3) and (4), become∫
�

(
Ni +

	t
2
v̂b
@Ni
@xb

)
R̂a d�=0 ∀ free un+1ai (22)

and ∫
�
	t
@Ni
@xa

R̂a d� +
∫
�
Ni�

@ûn+1a

@xa
d�=0 ∀ free pn+1i (23)

where R̂a represents the momentum residuals

R̂a=�

(
ûn+1a − ûna
	t

+ v̂nb
@ûn+1=2a

@xb

)
− @�̂nab
@xb

+
@p̂n+1=2

@xa
(24)

The time–space adaptive techniques presented in Section 3 for a Eulerian reference frame are
generalized for the ALE co-ordinates. Thus, the local time-step formula presented in Section 2
is rede�ned in terms of the apparent convective velocity v= u−w, becoming 	t= �he=‖vn‖.
Again, the combination of remeshing with these local time steps leads to a time–space adaptive
procedure where the spatial and time discretizations are simultaneously adjusted.
In order to accommodate the movement of the structure, more conveniently described in

a Lagrangian reference frame, and the �uid �ow, described in Eulerian co-ordinates in our
original program [4], we resorted to an ALE description of the FSI problem. Here we follow
the basic idea proposed by Nomura and Hughes [16], de�ning an external Eulerian region
for the �uid far from the structure, a transition region, where the ALE reference frame is
used, and a Lagrangian description at the �uid–solid interface. These regions are depicted in
Plate 1.
Note that mesh velocity must vary from zero, in the Eulerian region, to the velocity of the

structure at the �uid–solid interface. We use a Laplace equation to determine a smooth and
gradual transition of mesh velocity (and position) in the ALE region. Here, though, because
we are dealing with a remeshing strategy based on re�ning a coarse background mesh, we
must move not only the current computational mesh, but also the background mesh that will
be used for remeshing. The Laplace equation algorithm is used in both cases.
The time advance of the �ow �eld follows a segregated scheme. Pressure is computed

�rst, then the new velocity components are updated. All linear equation systems involved are
symmetric and solved by a matrix-free element-by-element pre-conditioned conjugate gradient
method optimized for parallel-vector performance via mesh colouring [4]. Once the new �ow
�eld is found, the update of the structure position is obtained integrating Equation (20), with
FL computed from Equation (21), using a Runge–Kutta method.
We remark that the time step used to advance the �uid–structure solution is the interpolation

time step 	tint discussed in Section 2.1.1. In the FSI problems examined in this work, 	tint is
typically about 103 times smaller than the periods of oscillation of the structures considered
and of the time scale of vortex shedding. In such cases, the use of the segregated solution
procedure and the explicit time integration of the rigid-body motion is adequate. Furthermore,
for the same reason, it was not necessary to introduce sub-iterations between �uid=solid within
each time step. The reader should be aware, though, that the procedure adopted here may not
be suitable for problems involving structural and forcing frequencies of the order of 1=	tint
or higher.
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5. NUMERICAL EXAMPLES

In this section, we present applications of the techniques described above in some represen-
tative problems.
The �rst example is the simulation of turbulent vortex shedding around a �xed obstacle.

This application shows the use of our LES procedure, with implicit modelling of sub-grid
scales, in a test case where we can compare our results with experiments and more re�ned
3D numerical solutions. The purpose of this example is to assess our 2D LES approach in a
problem where we do not have to deal with issues related to the ALE techniques implemented
in the code.
The second example demonstrates the use of adaptive remeshing in an ALE computation

with moving boundaries. It involves a laminar �ow, where a rigid-body cylinder oscillates
driven by the periodic forces caused by vortex shedding. The computational procedure was
successful in detecting the occurrence of lock-in, where the vortex-shedding frequency is
captured by the natural frequency of the structure, for the conditions considered in the example.
In this laminar �ow problem turbulence modelling is not an issue, and we pay attention to
the ALE techniques and to the adaptive moving meshes implemented in the code.
The FSI problem associated to the �ow around a dominant central span section of the

Rio-Niter�oi bridge is taken as our �nal example. This continuous steel twin box girders
bridge exhibits vortex-induced oscillation in the �rst bending mode when subjected to cross
winds of relatively low velocities. We compare our results for the central span oscillation
with reduced scale experiments performed in wind tunnel [17]. Whilst in the previous ex-
amples, we assessed the LES and the ALE techniques separately, in this practical engineer-
ing problem both the LES and the ALE adaptive techniques are simultaneously used in the
computation.
All analyses have been non-dimensionalized in terms of reference scales. The reference scale

for length is either the height of the square cylinder, the diameter of the circular cylinder or
the depth of the bridge section. In all cases we denote the reference length by d. The free
stream velocity u0 is the reference scale for velocity. The reference pressure scale is �u20 and
time is non-dimensionalized by d=u0, i.e. t∗= u0t=d. The simulations are parameterized by the
global Reynolds number Re=�u0d=�.
Numerical results are assessed in terms of drag and lift forces, of vortex-shedding frequency,

and of the mean velocity and kinetic energy of �uctuations behind the square cylinder. The
drag and lift coe
cients are, respectively, given by CD =2FD=�u20d and CL =2FL=�u

2
0d, where

FD and FL are, respectively, the drag and lift forces per unit span. The vortex-shedding
frequency f is given in the non-dimensional form by the Strouhal number St=fd=u0.

5.1. Cross �ow past a square cylinder at high Reynolds number

Simulations have been performed for Re=104, 2:2× 104, 105 and 106. Figure 2 presents
the analysis domain. A uniform velocity �eld with u1 = u0 and u2 = 0 is prescribed on the
upstream face. At the faces parallel to the oncoming �ow the condition u2 = 0 is imposed and
at the downstream face free traction and zero reference pressure are prescribed. On the body
surface impermeability and non-slip velocity boundary conditions are introduced.
About 800 meshes, containing approximately 8000 elements each, were generated and used

in transient analyses running from t∗=0 to 120, with minimum element size of 0:02d. Typi-
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Figure 2. Analysis domain for the square cylinder in cross �ow example.

cally, such analyses took about 18 000 time steps, involving the update of over 15 000 nodal
variables per time step. Each transient ran for approximately 6 h on a 1:5 GHz P4 processor.
The level of spatial re�nement employed, though, is insu
cient to resolve the thin bound-
ary layers that characterize the cross �ow at high Reynolds numbers. A limited investigation
on the sensitivity of the results with respect to the choice of the minimum element size
was performed for the Re=105 example. No signi�cant changes on the values of the mean
force coe
cients or the Strouhal number were observed when the minimum element size was
reduced to 0:01d. On the other hand, the computation took almost four times more CPU,
partially because the increased number of elements, but mainly due to the time step reduction
dictated by the expression 	t= �he=‖un‖. It must be said that the element size of 0:01d is
still too large to capture boundary layer e�ects for the Re=105 example. However, for prob-
lems involving bodies with sharp corners such as the square cylinder (and the Rio-Niter�oi
bridge we shall consider in Section 5.3), the separation of boundary layers and the associated
�ow patterns are more strongly dictated by the sharp corners than by boundary layer mechan-
ics. This explains the reasonably good results we shall present next, despite our insu
cient
resolution of boundary layers. On the other hand, boundary layer modelling (introduced by
special boundary conditions based on near wall models) is required if we expect to simulate
the so-called Drag Crisis that occurs for blu� bodies with smooth curvatures (such as a cir-
cular cylinder). The Drag Crisis is caused by a sudden change of the position of boundary
layer separation. For cross �ow past circular cylinders it occurs at about Re=3× 105 and the
resulting change in the �ow pattern strongly a�ects the forces acting on the body.
Table I presents a comparison between our numerical results and some experimental and 3D

LES data [21]. Note in Table I that the numerical time-averaged drag coe
cient we obtained
is in good agreement with the experimental value of CD≈ 2 that characterizes the mean drag
on square cylinders over a wide range of Reynolds numbers. As far as the rms �uctuation of
CL is concerned, the reported experimental results depend strongly on the level of turbulence
present on the free stream �ow [19]. For a smooth free stream such as the considered in this
work, Vickery [19] reported the value of 1.32 for the �uctuating lift. Thus, the rms �uctuation
of CL obtained from the Re=105 simulation is also in good agreement with the experimental
observation. On the negative side, there is some discrepancy with regard to the Strouhal
number. Indeed, Table I shows that our computation predicts a higher Strouhal number than
that observed in experiments. However, in fairness to our 2D LES computations, note that the
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Table I. Numerical and experimental results for Re ranging from 104 to 106.
The over bar represents time-averaged values.

Experimental results RE �CL 	CLrms �CD 	CDrms St

Lee [18] 1.75E+5 0 — 2.05 0.16–0.23 —
Vickery [19] 1.00E+5 — 1.32 2.05 0.17 0.12
Lyn et al. [20] 2.14E+4 — — 2.10 — 0.13
3D LES results presented in a workshop [21] RE �CL 	CLrms �CD 	CDrms St
Kawamura and Kawashima 2.2E+4 −0:005 1.33 2.58 0.27 0.15
Archambeau et al. 2.2E+4 0.0 — 2.02 — 0.09
Pourqui�e et al. 2.2E+4 −0:04 1.15 2.30 0.14 0.13
Tamura et al. 2.2E+4 −0:09 1.79 2.77 0.19 0.14
This work—2D LES RE �CL 	CLrms �CD 	CDrms St

1.0E+4 0.12 1.47 2.10 0.57 0.16
2.2E+4 −0:005 1.75 2.03 0.60 0.16
1.0E+5 −0:08 1.37 2.11 0.58 0.16
1.0E+6 0.13 1.45 2.06 0.60 0.16

Figure 3. Mean velocity distribution as a function of x at Re=22 000. Comparison of the present work
with other numerical and experimental data [20, 22–24].

results obtained using much more expensive 3D LES computations, also presented in Table I,
are not signi�cantly better than ours when compared with the experiments.
Next we show more comparisons, this time for Re=2:2× 104, using the results presented

by Bouris and Bergeles [22]. These authors have used the standard Smagorinsky sub-grid scale
model in their 2D LES computations, comparing their results with experiments and 3D LES
numerical data. In Figure 3 we see the time-averaged (mean) velocity obtained by several
authors together with our own results with 2D LES based on implicit sub-grid modelling.
Figure 3 shows that the centreline velocity we obtained is closer to the experimental data
of Lyn et al. [20] than the centreline velocity obtained by Bouris and Bergeles in their 2D
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Figure 4. Total kinetic energy of �uctuations (periodic+turbulent) behind the cylinder at Re=22 000.
Comparison of the present work with other numerical and experimental data [20, 22–24].

LES computation [22]. In particular, we obtained a better approximation of the size of the
recirculation zone, although this is still smaller than that observed experimentally [20].
Figure 4 shows the total (periodic+turbulent) kinetic energy of the �uctuations behind the

body. The total kinetic energy of the �uctuations is given by

k=0:5((u− �u)2 + (v− �v)2) (25)

where �u and �v denote the time-averaged components of the velocity �eld. Our results match
closely those of Bouris and Bergeles [22] up to x=d=3 and the experimental data of Lyn et al.
[20] up to x=d=2. In this region, our results are surprisingly better than the 3D LES results of
Murakami and Mochida [23]. However, the total kinetic energy we predicted becomes smaller
than that observed experimentally, as we proceed further downstream. This can be explained
by the fact that our procedure is based on automatic re�nement of a coarse background mesh.
In the present problem, re�nement is concentrated close to the obstacle and the extent of the
re�ned region downstream depends on the number of elements we speci�ed for the automatic
remeshing procedure. Our total kinetic energy result downstream would be improved if we
allowed more elements to be used in the analysis, but, clearly, this would lead to a more
expensive computation.

5.2. Circular cylinder driven by periodic vortex shedding

The relevant non-dimensional parameters are the Reynolds number Re=�u0d=�, the reduced
mass M ∗=m=�d2, the reduced (or relative) damping �= c=2

√
km and the reduced velocity

UR = u0=fnd, where fn=1=2	
√
k=m is the cylinder natural frequency of oscillation in vacuum.

We present next results for a simulation with Re=200, M ∗=30, �=0:01 and UR =5:5. At
time t∗=0 the cylinder is placed on a uniform �ow (u= u0; v=0) and kept at a �xed position
until t∗=150. Then, the cylinder is released to move along the vertical y-direction. Figure 5
shows the evolution of vertical displacement, vertical velocity and drag and lift coe
cients.
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Figure 5. Time evolution of: (a) cylinder displacement, (b) cylinder velocity,
(c) drag coe
cient and (d) lift coe
cient.
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Table II. Results for a �xed circular cylinder in cross �ow at Re=200.

Source CD (mean) CL (rms) St

Schlichting [25] (exp.) 1.3–1.4 — 0.18–0.20
Rosenfeld et al. [26] (num.) 1.31 0.460 0.20
Braza et al. [27] (num.) 1.3 0.544 0.20
Present work (num.) 1.382 0.499 0.195

Table III. Strouhal number and force coe
cients before and after the
cylinder is released to oscillate freely.

Parameter Fixed cylinder Released cylinder

St 0.195 0.176
CD (mean) 1.382 1.979
CD (rms) 0.034 0.391
CL (rms) 0.499 1.618

Typical adaptive meshes, at t∗=300 and 320, and details of the velocity and pressure �elds
at t∗=300 are shown in Plate 2. The adaptive meshes contained about 5000 elements each,
with minimum element size of 0:015d. The minimum element size of 0:015d is �ne enough to
resolve the boundary layer for this laminar �ow at Re=200. The analysis took about 140 000
time steps, involving the update of over 10 000 nodal variables per time step. The transient
ran for about a day on a 1:5 GHz P4 processor. The results for �xed cylinder compare well
with experimental and numerical results [25–27], as shown in Table II.
A comparison between statistical data for �xed and released cylinder conditions is shown in

Table III. A signi�cant increase on the forces acting on the cylinder was observed in lock-in
conditions.
Also, note the change of Strouhal number from St=0:195, obtained when the cylinder is

�xed, to the lock-in state at St=0:176, obtained when the cylinder is released. When lock-in
occurs, the frequency of oscillation f of the lift force is captured by the natural frequency of
oscillation of the immersed cylinder, f′

n=1=2	
√
k=(m+	m), where 	m is a small mass of

�uid that is displaced as the cylinder moves. Thus, in lock-in conditions, the Strouhal number
becomes St=1=UR

√
m=(m+	m). Neglecting 	m we would obtain a Strouhal number of

0.182 during lock-in, since UR =5:5 in this example. The slightly lower lock-in Strouhal
number of 0.176 observed in the numerical simulation is due to the displaced mass of �uid
	m that moves with the cylinder, reducing the system oscillation frequency.

5.3. Oscillation of the Rio-Niter�oi bridge

In this section, we present results from a numerical simulation of �uid–structure interaction
for the Rio-Niter�oi bridge, located in Rio de Janeiro, Brazil. This bridge is known to exhibit
vertical oscillation in the �rst bending mode, caused by vortex shedding. Figure 6 shows the
bridge cross-section exposed to the wind. The analysis domain is depicted in Figure 7. The
structural data used in the analysis were mass per unit length m=24604:33 kg=m, reduced
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Figure 6. Detail of the Rio-Niter�oi bridge section analysed.

Figure 7. Analysis domain for the Rio-Niter�oi bridge example.

damping �=0:01 and the �rst natural bending mode frequency fb = 0:32 Hz. The air density
and viscosity used were 1:25 kg=m3 and 1:81× 10−5 kg=ms, respectively. The dimensions of
the bridge section studied are shown in Figure 6.
Simulations have been performed for wind velocities of u0 = 40; 54; 62 and 70 km=h. The

Reynolds number ranges from 5:69× 106 to 1:03× 107. The adaptive meshes contained about
25 000 elements each, with minimum element size of 0:02d. The transient analyses took from
45 000 to 60 000 time steps, involving the update of about 50 000 nodal variables per time
step. Each simulation took 2–3 days to complete on a 1:5GHz P4 processor. Figure 8 presents
two adaptive meshes for the example with u0 = 62 km=h. Figure 9 shows the time evolution
of vertical displacements for di�erent wind velocities.
The mean amplitude of oscillation of the bridge was compared with results obtained in

a reduced-scale experiment performed in a wind tunnel [17]. This comparison is shown in
Figure 10. Note that the maximum amplitude in the numerical simulations is 210 mm, at the
wind speed of u0 = 54km=h This maximum amplitude value is close to the maximum amplitude
of 260mm obtained from the wind tunnel experiments. However, in the experiments the peak

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:673–693



690 P. A. B. DE SAMPAIO ET AL.

Figure 8. Typical adaptive meshes used during the simulation with u0 = 62 km=h.

amplitude occurs at u0 = 62km=h instead of u0 = 54km=h, revealing that we predicted a lower
resonance wind velocity (Ucrit) than that obtained in the wind tunnel.
In resonance the forcing frequency f is equal to �rst bending mode frequency fb. Thus,

the wind velocity at which resonance occurs can be written as

Ucrit =
fbd
S

(26)

In the above equation, fb and d are �xed data associated to the bridge. Thus, we conclude that
we obtained a lower value for the wind velocity at resonance Ucrit because in our simulations
the Strouhal number S was overpredicted.
We recall that the overprediction of the Strouhal number also occurred in the example

presented in Section 5.1, where we have addressed the problem of cross �ow past a square
cylinder at high Reynolds number. Further studies will be required to �nd out if the overpre-
diction of the Strouhal number in our procedure can be cured by the use of special boundary
conditions, based on boundary-layer physics, or if it is an intrinsic limitation of the 2D LES
approach.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:673–693



TURBULENT FLUID–STRUCTURE INTERACTION 691

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00

time (t*)
h

*=
h

/D

(a) Vertical displacement for Km/h540 =u

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00

time (t*)

h
*=

h
/D

(b) Vertical displacement for Km/h620 ζu

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.00 100.00 200.00 300.00 400.00 500.00

time (t*)

h
*=

h
/D

(c) Vertical displacement for Km/h700 =u

Figure 9. History of vertical displacement for di�erent wind velocities.

Figure 10. Mean amplitude of oscillation as a function of wind velocity.
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6. CONCLUDING REMARKS

In this work we have shown the combination of time–space adaptive techniques, Large
Eddy Simulation based on implicit sub-grid modelling and an arbitrary Lagrangian Eule-
rian (ALE) procedure in the study of representative �uid–structure interaction (FSI)
problems.
Adaptive techniques permit optimizing the use of limited computer resources, focusing dis-

cretization re�nement where it is most needed. Optimization of computer resources is particu-
larly important for addressing the complex and demanding FSI problems found in engineering.
The combination of spatial remeshing with local time steps, adjusted according to the time
scales of the �ow features resolvable by the mesh, leads to time–space adaptive computations
and is of foremost importance for the simulation of transients.
In the �rst example, we considered the cross �ow past a �xed square cylinder at high

Reynolds (turbulent) conditions. The purpose of this example was to verify the performance
of our 2D LES procedure with implicit sub-grid modelling. We obtained good results for
the forces acting on the body. We also obtained a good qualitative prediction of the mean
velocity and of the total (periodic+turbulent) kinetic energy of the �uctuations behind the
square cylinder. However, the Strouhal number obtained was higher than that reported on
experiments.
The second example involved the laminar cross �ow past a circular cylinder and used a

very �ne time–space discretization, in such a way that we could validate our ALE and FSI
algorithms, without dealing with turbulence modelling issues. The results obtained while the
cylinder was maintained in a �xed position were in good agreement with other numerical
and experimental data. After the cylinder has been released to oscillate freely, the simulation
was capable of detecting the lock-in phenomenon, where the vortex-shedding frequency is
captured by the natural frequency of the structure.
In the third example, we considered a civil engineering problem at a high Reynolds num-

ber: the �ow-induced vertical oscillation of a dominant central span section of the Rio-Niter�oi
bridge. The amplitude of oscillation predicted by the code was in reasonably good agree-
ment with experimental results obtained in wind tunnel. However, the numerical simulation
predicted resonance at a lower velocity than that observed in the wind tunnel experiments.
It was shown that this is caused by a overprediction of the Strouhal number in the nu-
merical simulation, a de�ciency we have already observed in our �rst example, the cross
�ow past a square cylinder at high Reynolds numbers. Further research is required to es-
tablish if the Strouhal number prediction can be improved with the use of special bound-
ary conditions, based on boundary layer physics, or if this de�ciency is intrinsic to the 2D
approach.
Clearly, real turbulent �ows are three dimensional and involve very small space and time

scales. Apart from extremely �ne DNS computations, not a�ordable in most practical prob-
lems, other approaches used to simulate turbulence in engineering, such as LES or RANS,
depart from reality in one way or another. In such a context, there is no such a thing as an
absolute turbulence model that can be considered without reference to what is expected from
its practical use. This is the pragmatic position adopted in this work. Indeed, we share the
view of Bouris and Bergeles [22] that although one should aim at performing realistic 3D
LES computations, 2D LES is a compromise imposed by computer limitations that should not
be dismissed so easily.
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Eulerian fluid region        ALE fluid region        Rigid-body region

Plate 1. Splitting of the problem domain into Eulerian, ALE and rigid-body regions.
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Plate 2. Adaptive meshes and details of the velocity and pressure �elds close to the moving cylinder.
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